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Abstract— Finite elements (FE) are often treated as small
domains with constant material property tensors (MPT). Recent
works have demonstrated the benefits of using a continuously
inhomogeneous MPT (CIMPT) in FEs. We are going to show
how curvature and CIMPTs can be lumped into a common
factor involved in the evaluation FE matrices. The factor carries
all the information related to element geometry and MPTs and
can be interpolated using an auxiliary basis. This leads to a
generalized universal matrix (UM) concept applicable to curved
elements with CIMPTs. We demonstrate that the generalized UM
method is computationally superior to numerical cubature based
evaluation of FE matrices. Integrated with domain decomposition
method, the proposed approach is used to solve some practical
examples.

Index Terms— generalized universal matrix, continuously in-
homogeneous, continuously inhomogeneous material property
tensor, curved element, domain decomposition

I. I NTRODUCTION

The two common techniques used for evaluation of FE
matrices are the universal matrix method and numerical in-
tegration that is usually based on some (Gaussian) quadra-
ture/cubature rules. Numerical integration is more common
in cases where straightforward decomposition of factors of
integrations into precomputable look-up tables is not available.
For example, numerical quadrature/cubature is often used
in presence of element curvature or CIMPTs or when the
integrand is not efficiently decomposable into local factors
that form a finite dimensional (polynomial) space, e.g. in
evaluation of MoM matrices.

Rectilinear geometry and piece-wise constant MPTs are the
common assumption in FEM practice. While the assumption
of rectilinearilty is often relaxed in curved FE practice [1, 2],
the assumption of piece-wise constant MPTs is almost always
taken for granted. Nevertheless, physical intuition and practical
needs have motivated the use of FEs with CIMPT [3–5]. For
example, Webb uses a polynomial representation of magnetic
MPT for evaluation of FE matrices arising from a nonlinear
magnetic problem [3]. Since the nonlinear magnetic MPT
is a function of the magnetic field intensity~H , it must be
able to follow the spatial variations of~H that in the very
first place were represented by the piece-wise polynomial
functions of the FE discretization. This motivates the use of a
piece-wise polynomial representation for the magnetic MPT.
Ilic et al., use a piece-wise linear representation of MPTs
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and solve sample problems involving some presumed CIMPT
distributions [4]. Recently, in [5], a tensorial formulation is
introduced that allows the generalization of the universal
matrix concepts into FEs with CIMPTs and curved geometries.
Perhaps a difficulty with the tensorial formulation of [5] is
that the reader cannot easily relate the presented formulation
to the widely used universal matrix method as introduced
by Silvester [6]. In this work, however, we shall present a
slightly different formulation that is in better harmony with
the common understanding of the universal matrix approach.
Since the generalized formulation is applicable to FEs with
CIMPTs and curvilinear geometries it can be used as an
efficient tool in FE implementations.

In what follows, the generalized universal matrix approach
is formulated. Then, a simple complexity comparison between
the proposed approach and the numerical cubature based
method is performed. Finally, insection III, some practical
problems are solved using the proposed methodology.

II. GENERALIZED UNIVERSAL MATRIX METHOD

Systematically speaking, the evaluation of FE matrices can
be cast into the following steps [5]:

1) Assume a reference element with a fixed geometry,
e.g.Fig. 1aand develop the required polynomial/vector-
polynomial basis on the reference element.

2) Develop the required transformation rules for the basis,
its various derivations, and theJacobian defined between
the reference element and a presumed physical element,
e.g.Fig. 1b.

3) As required by the problem weak formulation, express
the required integro-differential form first on the physical
element.

4) Since, the integro-differential form is originally defined
over the physical domain, appropriate transformations
must be used to re-express it over the reference element.

5) Identify the factors that are solely determined by the ge-
ometry and/or material properties of the physical element
from those solely defined (depend) on the reference ele-
ment. The physical-element geometry dependent factors
hereafter referred to as the metric factors.

6) Being independent from the reference element coordi-
nates, the metric factors are pulled out of the integral,
while the remaining terms become independent of the
metric properties of the physical element. The resulting
integrals can hence be precalculated and stored in the
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(a) The 3D reference element. (b) An actual curved element.

Fig. 1: A visualization of the concept of reference/physical
elements.

so called universal matrices. Consequently the evaluation
of FE matrices turns into a sequence of multiply-add
operations.

In what follows, we shall implement the abovementioned
strategy for evaluation of FE matrices.

A. The Mass Matrix

We shall begin with the derivation of the mass matrix
defined in(1).

[T ]n×n =

∫

Kp











~λ0

~λ1

...
~λn−1











[ǫr]
[

~λ0
~λ1 . . . ~λn−1

]

dKp (1)

Through some detailed derivation we show that the follow-
ing formulation can be used for evaluation of the mass matrix
[T ]n×n in whichM

T
s are a set of3×3 matrices (called metric)

that carry all the information required to evaluate the mass
matrix for an individual physical element.

[T ]n×n=
∑

s

∫

Kr











F0

F1

...
Fn−1











M
T
s

[

F0 F1 . . . Fn−1

]

βsξ0ξ1ξ2

(2)

By looking at (2) we realize that all metric properties of
an individual element are lumped in theMT

s metric. Hence,
with respect to each entry ofMT

s , each combination of the
other three factors:Fi, βs and Fj is a fixed polynomial
expression in terms of the barycentric coordinates. Clearly, one
can precalculate and store the integral such combinations as an
element-metric independent factor. This constitutes to what we
call the generalized universal matrix for evaluation of[T ]n×n,
the mass matrix. Note that in the case of rectilinear elements
with element-wise constant MPTs, the[K][ǫr][K]Tdet J factor
will be a constant matrix, and the interpolation sum overs runs
on one single term. In such a case, the formulation in(2) will
be identical to what is known as the conventional universal
matrix formulation for the mass matrix[T ]n×n.

B. The Stiffness Matrix

The derivation begins with the definition of the stiffness
matrix as given in(3).

[S]n×n=

∫

Kp

∇×











~λ0

~λ1

...
~λn−1











1

[µr]
∇×

[

~λ0
~λ1 . . . ~λn−1

]

dKp (3)

Similar to the mass matrix, a generalized universal matrix
formulation is derived for the stiffness matrix[S]n×n, in which
through the use of a metric factor all entities identifying
individual physical elements are separated from the othersthat
are solely expressible as polynomials in terms of barycentric
variables.

III. N UMERICAL EXAMPLES

Our intention in this section it to provide a numerical
justification for the proposed generalized universal matrix
approach. For this purpose, we shall use the method to solve
a few problems with CIMPTs and/or curvilinear boundaries.
These will include:

i A dielectric loaded waveguide with CIMPTs [4].
ii Scattering from aLuneburg lens.
iii A Luneburg lens excited by a waveguide.
iv A conformal spherical PML.
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